A fractional generalization of the Poisson processes
نویسنده
چکیده
It is our intention to provide via fractional calculus a generalization of the pure and compound Poisson processes, which are known to play a fundamental role in renewal theory, without and with reward, respectively. We first recall the basic renewal theory including its fundamental concepts like waiting time between events, the survival probability, the counting function. If the waiting time is exponentially distributed we have a Poisson process, which is Markovian. However, other waiting time distributions are also relevant in applications, in particular such ones with a fat tail caused by a power law decay of its density. In this context we analyze a non-Markovian renewal process with a waiting time distribution described by the Mittag-Leffler function. This distribution, containing the exponential as particular case, is shown to play a fundamental role in the infinite thinning procedure of a generic renewal process governed by a power-asymptotic waiting time. We then consider the renewal theory with reward that implies a random walk subordinated to a renewal process.
منابع مشابه
Fractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملA generalization of the space-fractional Poisson process and its connection to some Lévy processes
The space-fractional Poisson process is a time-changed homogeneous Poisson process where the time change is an independent stable subordinator. In this paper, a further generalization is discussed that preserves the Lévy property. We introduce a generalized process by suitably time-changing a superposition of weighted space-fractional Poisson processes. This generalized process can be related t...
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملSome Generalizations of Poisson Processes
In this paper we make an attempt to review count data models developed so far as generalizations of Poisson process. We consider Winkleman’s gamma count model and the Weibull count model of Mc Shane et al. The fractional generalization of Poisson process by Mainardi et al. is also considered. A Mittag-Leffler count model is developed and studied in detail. Simulation studies are also conducted.
متن کامل